
Classes and objects
Lecture 3

by Marina Barsky

Software objects

• Real objects in the real
world have

• things that they can
do (actions,
methods)

• things that describe
them (attributes,
properties)

• In programming, we
have the same kind of
thing

Change of perspective

• The functionality of real-world objects tends to be tightly
bound up inside the objects themselves

• We will learn how to bundle together data and actions
inside a single software construct called object

What sounds more natural?

microwave.cook (chicken)

cook (microwave, chicken)

With objects we can model
anything

• Physical objects: House, Room

• Persons: Student, Patient

• Abstract concepts: Time, Relationship

• Processes: Simulation, GamePlay

Everything in Java must have a
type (typed language)

• Before creating any new objects, we must first define a new
type or a class of objects

Here is one:
class Dog{

String name;

String breed;

int size;

double weight;

}

Dog pets = new Dog[7];

• This is array of references not array of dogs!

• What is missing?

• Actual dogs

How to create an array of Dogs

0 1 2 3 4 5 6

Dog pets = new Dog[7];

pets[0] = new Dog();

pets[1] = new Dog();

pets[0].name = "Fido";

How to create an array of Dogs

0 1 2 3 4 5 6

Fido

Dog pets = new Dog[7];

pets[0] = new Dog();

pets[1] = new Dog();

pets[0].name = "Fido";

pets[0] = pets[1];

How to create an array of Dogs

0 1 2 3 4 5 6

Fido

• Who references “Fido”?
• What is stored in pets[2]?
• What is it pointing to?

public static void main (String [] args) {
Dog d1 = new Dog();
d1.name = "Bart";
Dog [] pets = new Dog[2];
pets[0] = new Dog();
pets[0].name = "Lisa";

pets[1] = new Dog();
pets[1].name = "Marge";

pets[0] = pets[1];
pets[1].name = "Homer";
pets[1] = d1;

for(Dog d : pets)
d.bark();

}

• What is printed?
public class Dog {

String name;
int size;
public void bark() {

String sound = "Ruff!";
System.out.println(name +

" says " + sound);
}

}

Homer says Ruff!
Bart says Ruff!

Lisa says Ruff!
Homer says Ruff!

Lisa says Ruff!
Marge says Ruff!

Bart says Ruff!
Bart says Ruff!

NONE OF THE ABOVE

A

B

C

D

E

public static void main (String [] args) {
Dog d1 = new Dog();
d1.name = "Bart";
Dog [] pets = new Dog[2];
pets[0] = new Dog();
pets[0].name = "Lisa";

pets[1] = new Dog();
pets[1].name = "Marge";

pets[0] = pets[1];
pets[1].name = "Homer";
pets[1] = d1;

for(Dog d : pets)
d.bark();

}

• How many references?
public class Dog {

String name;
int size;
public void bark() {

String sound = "Ruff!";
System.out.println(name +

" says " + sound);
}

}

• How many total objects
allocated on the heap?

• How many abandoned
objects?

3

3

1

• What is the name of an
abandoned Dog?

“Lisa”

Bad Idea: exposing instance variables

• We should never
allow direct access
to instance
variables

• See what may
happen!

public class BadDog {
public String name;
public int height;
public void bark() {

…
}

public static void main (String [] {
BadDog d = new BadDog();
d.height = 0;

}
}

Access Modifiers

• public, private, and protected are called access
modifiers

• They control access of other classes to instance variables and
methods of a given class

• public: Accessible to all other classes

• protected: Accessible to the class declaring it and its
subclasses

• no modifier: Accessible to the class declaring it and all
classes in the same package

• private: Accessible only to the class declaring it

32

Data-Hiding Principle
(Encapsulation)

• Make instance variables private

• Use public methods to access/modify object data

• The methods are called accessors/mutators

• We will call them getters/setters

• Getter: get some value back

• Setter: set value of some instance variable

Example of Data Hiding

public class GoodDog {
private String name;
private int height;

public void setHeight (int h) {
if (height > 0)

height = h;
}

public int getHeight() {
return height;

}
}

declared
as private

setter

getter

Build an impenetrable wall around
your data
• Programs that use your classes should NOT:

be able to change the value of the instance variables directly

• Restrict the access to an object’s data so you can only get it or
change it by using methods

Class:
Instance variables
MethodsProgram

setPublic
methods:
getters
setters get

Slits
in the
wall

Advantages of Data Hiding

With Data Hiding and Encapsulation we can:

• validate the parameter passed to the method

• reject unacceptable values (such as negative year):
ignore them or throw an exception

• round the value to the closest valid or default value

• change method and make it faster/safer without
changing any code that uses our class

Setting up initial values

• Inside main:

PoorDog d = new PoorDog();

System.out.println("dog’s height is: "+ d.getHeight());

System.out.println("dog’s name is: "+ d.getName());

public class PoorDog {
private String name;
private int height;

…

public int getHeight() {
return height;

}

public String getName() {
return name;

}
}

• We do not want flattened
dog with name null!

• How do we ensure that
this never happens?

• Where do we perform
object setup – where do
we set the initial object
state?

Three steps of object creation

Dog d = new Dog();

Declare reference variable

Dog d = new Dog();

Create new Dog object

Dog d = new Dog();

Connect reference to object

public class Dog {
private String name;
private int height;

public void setHeight (int h) {
if (height > 0)

height = h;
}

public int getHeight() {
return height;

}
}

1

2

3

Dog() is called a constructor

Dog d = new Dog();

• Are we calling some method
named Dog()?

• Where is this method defined?

• The compiler writes a default
constructor method for you if
you did not define it:

public Dog(){

//do nothing

}

public class Dog {
private String name;
private int height;

public void setHeight (int h) {
if (h > 0)

height = h;
}

public int getHeight() {
return height;

}
}

How is constructor different from
a normal method?

A. There is no return
type

B. The name is exactly
the same as the
name of the class

C. There are no method
parameters

D. All of the above

E. Only A and B are true

public class Dog {
private String name;
private int height;

public Dog(){
}

public void setHeight (int h) {
if (height > 0)

height = h;
}

public int getHeight() {
return height;

}
}

Constructor

• The code in constructor
runs before the object is
assigned to the reference
variable

• This is our chance to
initialize everything that
needs to be initialized

• In most cases: we
initialize instance
variables

public class Dog {
private String name;
private int height;

public Dog(){
height = 10;
name = "Unnamed“;

}

public void setHeight (int h) {
if (h > 0)

height = h;
}

public int getHeight() {
return height;

}
}

Constructors with parameters

• We can force the user of
our class to pass
parameters during object
creation

• Both constructors
require that at least the
height of the Dog is
specified

• Each overloaded
constructor must have a
different signature

public class Dog {
private String name;
private int height;

public Dog(int height){
this.height = height;
this.name = "Unnamed“;

}

public Dog(int height, String name){
this.height = height;
this.name = name;

}

public void setHeight (int h) {
if (h > 0)

height = h;
}

public int getHeight() {

Does compiler always make a
default constructor?
• If we explicitly defined at

least one constructor in
our code, we do not have
a default constructor
(without parameters)
anymore:

Dog d = new Dog();

• This will not compile:
there is no constructor
without parameters

NO!
public class Dog {

private String name;
private int height;

public Dog(int height){
this.height = height;
this.name = "Unnamed“;

}

public Dog(int height, String name){
this.height = height;
this.name = name;

}

public void setHeight (int h) {
if (h > 0)

height = h;
}

public int getHeight() {

You must add default constructor
explicitly

Dog d = new Dog();

• This will work now

public class Dog {
private String name;
private int height;

public Dog(int height){
this.height = height;
this.name = "Unnamed“;

}

public Dog(int height, String name){
this.height = height;
this.name = name;

}

public Dog(){
this.height = 10;
this.name = "Unnamed“;

}

Defining a new type (class):

We need:

• Data fields = attributes = instance variables

• Capabilities = methods

• Constructor(s): setting up default values

Encapsulation

• Data hiding and protection of object’s data from illegal
changes is a part of a very important principle in OOP:
encapsulation

• The implementation and object data should be hidden from
the outside world

• Only public method signatures are outward-facing and are
accessible from outside. This is called object interface

Objects: summary

• We can model real world objects by abstracting selected
properties and actions of these objects, ignoring details.

• The Object-oriented program is a system of collaborating
objects. They collaborate by sending messages (calling each
other’s methods).

• The outside objects should not know how object A does its
thing or stores its data. Object A encapsulates its methods,
and exposes only method signatures – interface.

Static Variables

• Variables can either be “attached” to the class or to
instances of the class (objects).

• Static variables are not associated with any one object’s
state. They are usually properties or definitions.

• Non-static variables are called instance variables because
they are tied to exactly one instance of an object. They can
be accessed with the keyword ‘this’.

Static or No Static?

• When deciding if variable should be static:

Ask yourself: Is it possible that the value of this variable will
vary across different objects?

• Consider:

Rectangle class :

numSides;

height;

static (all rectangles have 4 sides)

not static (rectangles can have different dimensions)

Static Methods

• Methods also can either be “attached” to the class or to
instances of the class.

• Static methods do not depend on the state of the object.

• They can be answered without anything that could
reference the keyword “this”. Called using the class name.

• Non-static methods rely on an object’s state, often
depending on the values of instance variables. Called on an
instance.

Static or No Static?

• To decide if your method should be static:

Ask yourself: Does this method depend on the state of the
object, or is it always the same regardless?

• Consider a Rectangle class:

getArea();

calculateArea(int h, int w); static (formula; all
info provided as inputs)

not static (depends on a particular rectangle’s dims)

