Classes and objects

Lecture 3

Software objects

* Real objects in the real
world have

* things that they can
do (actions,
methods)

* things that describe
them (attributes,
properties)

* In programming, we
have the same kind of
thing

Change of perspective

What sounds more natural?

— L
cook (microwave, chicken) {\\ '

microwave.cook (chicken)

* The functionality of real-world objects tends to be tightly
bound up inside the objects themselves

* We will learn how to bundle together data and actions
inside a single software construct called object

With objects we can model
anything

Physical objects: House, Room

Persons: Student, Patient

Abstract concepts: Time, Relationship

Processes: Simulation, GamePlay

Everything in Java must have a
type (typed language)

e Before creating any new objects, we must first define a new
type or a class of objects

Here is one:

class Dog{
String name; ¥ '@’?%
String breed;
int size;
double weight; = 9 ‘Lo

How to create an array of Dogs

Dog pets = new Dog[7/]

;
4

0 1 2 3

* This is array of references not array of dogs!
* What is missing?

* Actual dogs

How to create an array of Dogs

Dog pets = new Dogl[7/];

0 1 2 3 4 5 6
pets[0] = new Dog () ;
pets[1l] = new Dog();

pets[0] .name = "Fido";

How to create an array of Dogs

Dog pets = new Dogl[7/];

o &

0 1 2 3 4 5 6
pets[0] = new Dog();
pets[1l] = new Dog(); * Who references “Fido”?
tsT0] _ wpidoms What is stored in pets[2]?
°ee SHele = TELE0T o What s it pointing to?
pets[0] = pets[l];

public class Dog {
String name;
int size;
public void bark() {
String sound = "Ruff!";
System.out.println(name +
" says " + sound);

n

}

public static void main (String [] args) {
Dog d1 = new Dog();
dl.name = "Bart";
Dog [] pets = new Dog[2];
pets[@] = new Dog();
pets[@].name = "Lisa";

pets[1] = new Dog();
pets[1].name = "Marge";

pets[@] = pets[1];
pets[1].name = "Homer";
pets[1] = di;

for(Dog d : pets
d.bark();

* What is printed?

A Lisa says Ruff!
Homer says Ruff!

Homer says Ruff!
Bart says Ruff!

C Lisa says Ruff!
Marge says Ruff!

Bart says Ruff!
Bart says Ruff!

E NONE OF THE ABOVE

public class Dog {
String name;
int size;
public void bark() {
String sound = "Ruff!";
System.out.println(name +
" says " + sound);

n

}

public static void main (String [] args) {
Dog d1 = new Dog();
dl.name = "Bart";
Dog [] pets = new Dog[2];
pets[@] = new Dog();
pets[@].name = "Lisa",;

pets[1] = new Dog();
pets[1].name = "Marge";

pets[@] = pets[1];
pets[1].name = "Homer";
pets[1] = di;

for(Dog d : pets)
d.bark();

* How many references?
3

* How many total objects
allocated on the heap?

3

* How many abandoned
objects?

1

* What is the name of an
abandoned Dog?

llLisa”

Bad Idea: exposing instance variables

public class BadDog { « We should never

public String name; :
public int height; allow direct access

public void bark() { to instance
variables
} * See what may
happen!

public static void main (String [] {
BadDog d = new BadDog();
d.height = 0;

T~

Access Modifiers

* public, private, and protected are called access
modifiers

* They control access of other classes to instance variables and
methods of a given class
* public: Accessible to all other classes

* protected: Accessible to the class declaring it and its
subclasses

* no modifier: Accessible to the class declaring it and all
classes in the same package

* private: Accessible only to the class declaring it

Data-Hiding Principle
()

Make instance variables private

Use public methods to access/modify object data

The methods are called accessors/mutators

We will call them getters/setters
* Getter: get some value back
» Setter: set value of some instance variable

Example of Data Hiding

public class GoodDog {
declared private String name;
as private private int height;

setter — Ppublic void setHeight (int h) {
if (height > 0)
height = h;
}

getter — Public int getHeight() {
return height;

}

Build an impenetrable wall around
your data

* Programs that use your classes should NOT:
be able to change the value of the instance variables directly

* Restrict the access to an object’s data so you can only get it or
change it by using methods

Class:

W
7y B THEABYR i Ay
} LR '
b AORA TR
DR TY 0t)

i Instance variables
Public
set | Methods
Program — methods: g
getters

Advantages of Data Hiding

With Data Hiding and Encapsulation we can:
 validate the parameter passed to the method

* reject unacceptable values (such as negative year):
ignore them or throw an exception

* round the value to the closest valid or default value

* change method and make it faster/safer without
changing any code that uses our class

Setting up initial values

public class PoorDog {
private String name; We do not want flattened

private int height; dog with name nul1!

e How do we ensure that

this never happens?

public int getHeight() {

return height; * Where do we perform

} object setup — where do
we set the initial object
public String getName() { state?

return name;

}
}

* Inside main:

PoorDog d = new PoorDog();
System.out.println("dog’s height is: "+ d.getHeight());

System.out.println("dog’s name is: "+ d.getName());

Three steps of object creation

= hew Dog(); public class Dog {

. private String name;
() Declare reference variable brivate int height;

Dog d = public void setHeight (int h) {
- if (height > 9)
() Create new Dog object neight - h:
}
Dog d new Dog(); public int getHeight() {
) Connect reference to object } return height;

Dog() is called a

Dog d = new Dog(); public class Dog {

private String name;

_ private int height;
* Are we calling some method

named Dog()?

« Where is this method defined? public void setHeight (int h) {
if (h > 9)
height = h;
 The compiler writes a default }
constructor method for you if
you did not define it: public int getHeight() {

return height;

}
public Dog(){ }

//do nothing

How is constructor different from
a hormal method?

public class Dog {

private String name; A. Thereis no return
private int height; type

public Dog(){ B. The name is exactly
} the same as the

name of the class
public void setHeight (int h) {

if (height > 0) C. There are no method
height = h; parameters
) D. All of the above
public int getHeight() { E. Only Aand B are true

return height;

)
) ©

Constructor

public class Dog {
private String name;

 The code in constructor private int height;
runs before the object is public Dog(){
ass!gned to the reference height = 10;
variable name = "Unnamed*;
* This is our chance to }
initialize everything that public void setHeight (int h) {
needs to be initialized if (h > 0)
height = h;
* |n most cases: we }
initialize instance
variables public int getHeight() {

return height;

}

Constructors with parameters

public class Dog {
private String name;
private int height;

* We can force the user of
our class to pass
parameters during object

creation public Dog(int height){
this.height = height;
this.name = "Unnamed*;
* Both constructors }
require that at least the
height of the Dog is public Dog(int height, String name){
specified this.height = height;

this.name = name;

}

* Each overloaded
constructor must have a
different signature

public void setHeight (int h) {
if (h > 9)
height = h;

Does compiler always make a
default constructor? NO!

public class Dog {

* If we explicitly defined at private String name;
least one constructor in private int height;
our code, we do not have public Dog(int height){
a default constructor this.height = height;
(without parameters) this.name = "Unnamed*;
anymore: }

public Dog(int height, String name){
this.height = height;

Dog d = new Dog(); % this.name = name;
* This will not compile: }
th.ere Is no constructor public void setHeight (int h) {
without parameters if (h > 9)
height = h;

You must add default constructor
explicitly

public class Dog {
Dog d = new Dog(); private String name;
private int height;

* This will work now public Dog(int height){
this.height = height;
this.name = "Unnamed*;

}

public Dog(int height, String name){
this.height = height;
this.name = name;

}

public Dog(){
this.height = 10;
this.name = "Unnamed*;

Defining a new type (class):

We need:

* Data fields = attributes = instance variables
e Capabilities = methods

e Constructor(s): setting up default values

Encapsulation

e Data hiding and protection of object’s data from illegal
changes is a part of a very important principle in OOP:
encapsulation

* The implementation and object data should be hidden from
the outside world

* Only public method signatures are outward-facing and are
accessible from outside. This is called

Objects: summary

 We can model real world objects by abstracting selected
properties and actions of these objects, ignoring details.

* The Object-oriented program is a system of collaborating
objects. They collaborate by sending messages (calling each
other’s methods).

* The outside objects should not know how object A does its
thing or stores its data. Object A encapsulates its methods,
and exposes only method signatures — interface.

Static Variables

e Variables can either be “attached” to the class or to
instances of the class (objects).

* Static variables are not associated with any one object’s
state. They are usually properties or definitions.

* Non-static variables are called instance variables because
they are tied to exactly one instance of an object. They can
be accessed with the keyword ‘this’.

Static or No Static?

* When deciding if variable should be static:

Ask yourself: Is it possible that the value of this variable will
vary across different objects?

* Consider:

Rectangle class:

D_U_mS l d_e S; static (all rectangles have 4 sides)

he J_ g’ht ; not static (rectangles can have different dimensions)

Static Methods

 Methods also can either be “attached” to the class or to
instances of the class.

* Static methods do not depend on the state of the object.

* They can be answered without anything that could
reference the keyword “this”. Called using the class name.

* Non-static methods rely on an object’s state, often
depending on the values of instance variables. Called on an
instance.

Static or No Static?

* To decide if your method should be static:

Ask yourself: Does this method depend on the state of the
object, or is it always the same regardless?

* Consider a Rectangle class:

ge tArea () ; ot static (depends on a particular rectangle’s dims)

static (formula; all
info provided as inputs)

calculateArea (int h, int w);

